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Theoretical Study of 2,4,6-Tris(30,50-
Diamino-20,40,60-Trinitrophenylamino)-

1,3,5-Triazine

XUE-HAI JU1 and ZUN-YAO WANG2

1Department of Chemistry, Nanjing University of
Science and Technology, Nanjing, P.R. China
2School of Biological and Chemical Engineering, Jiaxing
University, Zhejiang Jiaxing, P.R. China

The density functional theory (DFT) BLYP and B3LYP
method with 3–21G� and 6–31G�� basis sets were used to pre-
dict the structures, natural bond orbital (NBO) atomic
charges, and ring interactions of 2,4,6-tris(30,50-diamino-
20,40,60-trinitrophenylamino)-1,3,5-triazine (PL-1). Approxi-
mately, the molecule possesses C3 symmetry with three ben-
zene rings tilted to the triazine plane.The interactions among
three 30,50-diamino-20,40,60-trinitrophenylamino groups are of
additivity. The heat of formation of PL-1 was estimated to
be 427.6 J=mol via isodesmic reaction. Detonation velocity
and pressure are 8.5 km=s and 35.5GPa, respectively.

Keywords: 2,4,6-tris(30,50-diamino-20,40,60-trinitrophenylam-
ino)-1,3,5-triazine (PL-1), detonation velocity
and pressure, DFT calculation, heat of forma-
tion, ring interaction

Introduction

Theoretical treatment of energetic molecules receives a wide
range of recognition since it provides the necessary data needed
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for predicting the structures, thermodynamic properties,
spectroscopy, bonding characteristics, and so on [1–9]. This
information will be helpful for further investigation as well as
molecular design of energetic compounds. 2,4,6-Tris(30,50-
diamino-20,40,60-trinitrophenylamino)-1,3,5-triazine (PL-1; Fig. 1)
is a new thermally stable and insensitive explosive. The thermal
stability and performance of PL-1 is slightly inferior to TATB,
but its density is better than TATB. In addition to impact and
friction is comparable with TATB [10,11]. The attention this
molecule has received has to do not only with its applications
but also with its intriguing symmetry and electronic with-
draw–donate groups. In addition, the lone pair electrons on
the nitrogen atoms of the amino and nitro groups are coplanar
with p bonds of six-numbered rings, which provides a possible

Figure 1. Molecular structure and some atomic numbering
of PL-1.
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low-energy channel for the insulator-to-metal transition and
causes the bending of PL-1 nitro groups to be more difficult
than that of nitromethane. What is the total energy of the
interactions between the substituted benzene rings in PL-1?
How much do the conjugation effects contribute to stabiliza-
tion? Are the benzene rings constrained in their rotations with
respect to triazine and with what energy barriers in rotating?
As far as we know, there has not been such theoretical investi-
gation on PL-1. In this article, we performed full optimization
on PL-1 by DFT method with B3LYP and BLYP functionals
[12,13]. Based on the optimized structure, thermodynamic prop-
erties were obtained. We also predicted the detonation pressure
and velocity.

Computational Methods

The title molecule obtained from Chem3D software was fully
optimized at the DFT-B3LYP and BLYP levels by the Berny
method [14,15] with 3–21G� and 6–31G�� basis sets. Fre-
quency calculations were performed on each optimized struc-
ture. Natural bond orbital analyses and computations of
electron density at bonding critical points were performed at
the B3LYP=3–21G� level, since these properties are not sensi-
tive to the basis sets. The computed frequencies were used to
derive the thermodynamic functions heat capacity, thermal
corrections for enthalpy, and entropy employing the statistical
thermodynamic method. The heat of formation (DHf) of PL-1
was evaluated from the following isodesmic reaction by
Eq. (1).

DHo
298 ¼ DE0 þ DZPE þ DðHo

298 �Ho
0 Þ

¼ RDHf ðPÞ � RDHf ðRÞ
ð1Þ
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where the DHo
298 is the enthalpy change of the reaction at

298 K. DE0;DZPE, and DðHo
298 � DHo

290) are the changes in
the total energy, the zero point energy, and the enthalpy
change from 0 K to 298 K, respectively. RDHf(P) and RDHf(R)
are the sums of the heats of formation of the products
and reactants, respectively. The evaluation of the standard
thermodynamic functions was carried out using a self-
programmed code based on the theory of classical statistical
thermodynamics [16]. Geometry optimizations and vibrational
analyses were carried out with the Gaussian 98 code with
the default convergence cutoffs given in the program [17].
The evaluation of electron density is derived from the
AIM2000 program [18]. The detonation velocity (D) and
detonation pressure (P) were calculated by using empirical
Kamlet-Jacobs equations [19].

Results and Discussion

Optimized Geometries

The fully optimized structure of PL-1 is shown in Fig. 1.
Approximately, the molecule possesses C3 symmetry with three
benzene rings tilted to the triazine plane. All three benzene
rings are geometrically the same and look like screw propellers
that are evenly attached to the center triazine plane via a sec-
ondary amino group. Table 1 lists parts of geometrical para-
meters that related to the triazine ring and one of the
benzene rings. The geometries of the other two benzene rings
and their substituted groups are very similar to those listed.

As can be seen from Table 1, large basis set produces
slightly large bond lengths, while bond lengths obtained from
B3LYP are slightly shorter than those from BLYP. The values
of dihedral angles from all four computational levels show that
a tilt angle of ca. 30� between the planes of the benzene and
triazine, providing only partial conjugations between the center
and outer rings. Since the geometrical parameters at the
B3LYP=6–31G�� level are somewhat intermediate compared
to those obtained from other computational levels and also
since the average errors of geometries from B3LYP=6–31G��
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are relatively small [20], the remaining discussion associated
with the geometries will focus on the results from the
B3LYP=6–31G�� level. The C�NO2 bonds are lengthier than
the other type of C�N bonds. The oxygen atoms of the nitro
group next to the triazine are out of the benzene ring to which
it attaches (Fig. 1), which lowers the conjugation between this
nitro group and benzene ring. As a result, the C13�N14 bond is
slightly lengthier than those of C9�N18 and C11�N16 and thus
is prone to rupture upon stimuli.

NBO Charges, Electron Densities (q) at Bonding
Critical Points

Table 2 lists the NBO charges for PL-1 at the B3LYP=3–21G�

level. The NBO theory applies an interatomic orthogonaliza-
tion step to establish asymmetrical atomic orbitals [21] and
thus gives charges of relatively basis-set independence
compared to other methods such as Mulliken charges and its
variations. As can be seen from Table 2, N15 and N17 atoms
carry large negative charges since their pyramid structure of

Table 2
NBO charges of PL-1 at the B3LYP=3–21G� level

Atoms Charges Atoms Charges

N1 �0.5373 C11 �0.0172
C2 0.6271 C12 0.2435
N3 �0.5371 C13 �0.0120
C4 0.6271 N14 0.3682
N5 �0.5369 N15 �0.7203
C6 0.6270 N16 0.3441
N7 �0.5752 N17 �0.7188
C8 0.2565 N18 0.3389
C9 �.0.0037 Oa �0.2832
C10 0.2398 O �0.34 to

�0.35

a Nitro oxygen atoms that are out of the benzene ring (see Fig. 1).
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amino groups make them weakly conjugated with benzene ring
and unable to share the nitrogen lone pair, while all the carbon
atoms on the triazine bear large positive charges due to the
electronic pulling effects of their neighbor nitrogen atoms.
These large charge separations between neighbor atoms
facilitate a heterolytic cleavage of the relevant bonds. Also
notable is that one nitro oxygen atom, which is out of the
benzene plane, bears much less negative charges (�0.2832)
than those (in range of �0.3434 to �0.3494) of all the other
nitro oxygen atoms, since the former is not conjugated with
the benzene ring and unable to withdraw the electron from
the benzene ring.

Table 3 also reports the electron density at bonding critical
points. The evaluation of electron density is derived from the
AIM2000 program. The atoms in molecules (AIM) theory of
Bader [18] defines a discrete rather then a fuzzy boundary on
which space partitioning can be based. The electron densities
from the AIM theory are not sensitive to either the basis set
or induction of the electron correlation. As can be seen from
Table 3, the C�NO2 bonds are the weakest, followed by
N7�C6=C8 bonds, indicating that the C�NO2 is prone to rup-
ture in an initial decomposition process. Electron densities at
bonding critical points on the aromatic rings, which are not col-
lected, are much larger than those listed in Table 3, indicating
that there exists a conjugating effect within the ring and that
the bond strengths are much larger than that of a single bond.

Table 3
Electron densities (q) at bonding critical points at the

B3LYP=3�21G� level

Bond q Bond q

C6�N7 0.2860 C9�N18 0.2496
N7�C8 0.2920 C11�N16 0.2499
N7�H 0.2842 C12�N15 0.3225
C13�N14 0.2423 C10�N17 0.3226
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Ring Interactions

To evaluate the conjugations of triazine and benzene rings
being connected via imino group, single point energies were
calculated when the planes of these two rings were placed
vertical by the internal rotations of C6�N7 or N7�C8. The
total energies of PL-1 thus obtained are 96.4 and 94.9 less
stable than the most stable conformer, respectively, when
the dihedral angles of D1–6–7–8 and D6–7–8–9 equal 90�. The
energy differences demonstrate the conjugation effects
between triazine and benzene rings. To estimate the interac-
tions among substituted benzene rings attached to the
triazine, we computed the disproportionation energy [22] at
the B3LYP=3–21G� level, according to the energy change of
the isodesmic reaction:

The disproportionation energies Edisproportion of di- and tris-
substituted triazines are 3.5 and 10.1 kJ=mol, indicating that
the interactions among 30,50-diamino-20,40,60-trinitrophenylamino
groups being attached to triazine are small. Since 3� 3.5 is
approximately equivalent to 10.1, the interactions among
three 30,50-diamino-20,40,60-trinitrophenylamino groups are of
additivity.

Heat of Formation, Detonation Velocity, and Pressure

Table 4 lists the total energies, zero-point energies, and the
values of thermal correction at the B3LYP=6–31G� levels for
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three reference compounds being enlisted in the isodesmic
reaction (1). The predicted HOF of PL-1, together with the
total energies, zero-point energies, and the values of thermal
correction are also summarized in Table 4. Previous studies
have shown that the theoretically predicted values of HOF were
in good agreement with experiments by choosing appropriate
reference compounds in the isodesmic reaction [23,24].

On the basis of the estimated value of HOF, the detonation
velocity (D) and pressure (P) of PL-1 are 8.5 km=s and
35.5GPa, respectively. These values are not as high as
some well-known widely used explosives such as HMX
(D ¼ 9.1 km=s, P ¼ 39.5GPa [25]). However, the D and P are
expected to increase dramatically when PL-1 is binded with
oxidizers, as in the practical cases of mixture explosives, since
the title compound is in deficient of oxygen atoms. In addition,
the peripheral electronic withdraw–donate groups of PL-1
enable it to bind well with polymers to form polymer-bonded
explosives (PBXs) with good mechanical properties. Therefore,
PL-1 is expected to be novel candidate of high energetic density
materials (HEDM).

Table 4
Calculated total energy (E0), zero-point energy (ZPE), values
of thermal correction to enthalpy (HT), and heats of formation
(HOF) of the reference compounds and PL-1 at the B3LYP=

6–31G�� levela

Compd. E0 ZPE HT HOF

NH3 �56.5577682 88.62 10.01 �46.13 [27]
Melamine �446.5119969 299.81 24.93 �51.9 [27]
TATB �1011.8564920 408.90 42.51 28.5 [25]
PL-1 �3312.3098792 1242.82 137.79 427.6b

a E0 is in a.u., ZPE, HOF, and HT are in kJ=mol. The scaling
factor for ZPE and HT is 0.96 [28]. HOFs of melamine as well as
TATB are from the sum of heat of formation at 298.15 K in the solid
phase and the enthalpy of sublimation.

b This work.
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Conclusions

All three benzene rings are geometrically alike as screw
propellers that are evenly attached to the center triazine plane
by the connection of an amino group. There is a tilt angle of ca.
30� between the planes of the benzene ring and the triazine
plane, providing only partial conjugations between the center
and outer rings. The nitro group next to the triazine is out of
the benzene ring to which it attaches, resulting in the C�NO2

bond being the lengthiest and the weakest. The interactions
among 30,50-diamino-20,40,60-trinitrophenylamino groups attached
to triazine are small and additive. Detonation velocity (D) and
pressure (P) of PL-1 are 8.5 km=s and 35.5GPa, respectively.
These values are somewhere in between HMX (D ¼ 9.1 km=s,
P ¼ 39.5GPa) and TATB (D ¼ 7.6 km=s, P ¼ 30GPa) [25,26]
in terms of detonation performance.
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